Mark scheme - Wave Superposition

Questio n		Answer/Indicative content	Mark s	Guidance
1		Constant phase difference (between two or more waves)	B1	Ignore in phase
		Total	1	
2		A	1	
		Total	1	
3		(At the point where two or more waves meet the) resultant displacement is equal to the sum of the individual displacements (of the waves)	B1	Allow sum / net / total for resultant Ignore vector sum Not amplitude
		Total	1	
4	a	constant phase (difference of 90°)	B1	Ignore incorrect value Ignore same wavelength / frequency / period
	b	$\begin{aligned} & (\text { period }=) 4.0(\mathrm{~ms}) \\ & \left(f=0.004^{-1}\right) \\ & f=250(\mathrm{~Hz}) \end{aligned}$	C1 A1	Allow 1 mark for 0.25; k omitted
	c	$\text { (intensity }=) \overline{\left(\frac{24}{10}\right)^{2}\left(I_{0}\right)}$ intensity = $5.8\left(I_{0}\right)$	C1 A1	Not $\frac{144}{25} I_{0}$ Allow 1 mark for 4.84; misread graph and used $\left(\frac{22}{10}\right)^{2}$
	d	resultant displacement $=10(\mu \mathrm{~m})$	B1	Allow ± 1.5; Ignore sign
		Total	6	
5		There is a constant phase difference between the waves.	B1	
		Total	1	
6		Waves / sources with constant phase difference.	B1	
		Total	1	
7		(When two or more waves meet at a point) the resultant displacement is (equal to) the sum of the (individual) displacements (of the waves)	B1	Allow sum / total / net for resultant Ignore vector sum
		Total	1	
8		C	1	

$|$| | |
| :--- | :--- |

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& \begin{tabular}{l}
Basic information on equipment and measurements or measurements and uncertainty are given. \\
The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear. \\
0 marks \\
No response or no response worthy of credit.
\end{tabular} \& \& \begin{tabular}{l}
Alternatives based on equipment selected should be credited: \\
\(A B\) on screen with ruler giving \(16.7 \%\) uncertainty
\end{tabular} \\
\hline \multirow[t]{3}{*}{} \& c \& \multirow[t]{3}{*}{\begin{tabular}{l}
percentage uncertainty in a decreases \\
fringes move closer together / percentage uncertainty in \(x\) increases / actually measuring \(5 x\) so smaller effect / AW \\
with both measurements to 0.1 mm , measurement of a gives larger improvement so decrease in uncertainty in \(\lambda\)
\end{tabular}} \& B1 \& Allow any argument qualitative or quantitative, which considers: effect on \(a\), effect on \(x\) and correct conclusion \\
\hline \& \& \& B1 \& Allow alternative arguments, e.g. D is easily increased increasing \(x\) so increase in a will decrease uncertainty in \(\lambda\) as \(\Delta a / a\) smaller \\
\hline \& \& \& B1 \& \\
\hline \& \& Total \& 12 \& \\
\hline 2
3 \& \& \[
(x=) 200 \times 18 \quad \text { or } \quad(x=) 3600(m)
\]
\[
\begin{aligned}
\& (\lambda=) \frac{120 \times 3600}{2400} \\
\& \lambda=180(\mathrm{~m})
\end{aligned}
\] \& C1
C1

A1 \& | $\boldsymbol{N o t} v=f \lambda ; \quad 18=\frac{1}{200} \times \lambda$ |
| :--- |
| or $\lambda=3600(\mathrm{~m})$ |
| Allow 3600 m from $v=f \lambda$ when used as x here |
| Note using $x=1800 \mathrm{~m}$ is XP (this gives 90 m) |

\hline \& \& Total \& 3 \&

\hline \& \& The superposition of coherent waves \& B1 \& | Not 'combine / meet / interact' for 'superposition’ |
| :--- |
| Allow 'superposition of waves with a constant phase difference (at the sources)' |
| Allow 'waves that superpose constructively / destructively' |
| Examiner's Comments |
| Most candidates gave vague answers for interference. Answers such as 'this is when waves interact or collide' were prevalent. Interference is the superposition of coherent waves. |

\hline \& ii \& | path difference (is 4.5 cm , which) is 1.5λ |
| :--- |
| Destructive interference occurs | \& M1 \& | Allow lengths are $5 \lambda \& 3.5 \lambda$ and phase difference $=180^{(0)}$ or waves are in anti-phase |
| :--- |
| Not $\lambda / 2$ out of phase |
| Not path difference is 1.5 cycles / periods / oscillations |
| Examiner's Comments |
| This was another question that favoured the top-end candidates. The question required a clear understanding of path difference. Credit could only be given if the distances of 10.5 cm and 15.0 cm were used to answer the question. Destructive interference |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& \& \& occurred at \(\mathbf{C}\) because the path difference is \(\mathbf{1 . 5}\). A significant number of candidates struggled to get their physics across. Path difference was confused with phase difference and 'cycles' was used to imply wavelength. Many candidates incorrectly concluded that the path difference was \(0.5 \lambda\). Weaker candidates referred to nodes and antinodes in their descriptions. \\
\hline \& \& Total \& 3 \& \\
\hline 5 \& i \& 0.08 (m) \& A1 \& \\
\hline \& ii \& \(\pi\) (rad) \& A1 \& \\
\hline \& ii \& \[
\begin{aligned}
\& \text { path difference }=\lambda / 2 \text { or } 2 \times 0.08 \\
\& 0.16(\mathrm{~m})
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A0
\end{tabular} \& \begin{tabular}{l}
Allow ECF from (b)(i) \\
Allow path difference shown at K
\end{tabular} \\
\hline \& \& Total \& 3 \& \\
\hline \multirow[t]{4}{*}{2} \& \& \multirow[t]{4}{*}{\begin{tabular}{l}
Quieter than average (and / or louder) \\
Regions of destructive interference (and / \\
or constructive interference) \\
Calculation of fringe spacing (\(\mathrm{x}=\)
\[
330 \times 30 /(1200 \times 5.0)=1.65 \mathrm{~m})
\] \\
Effect is less noticeable further from the centre owing to different amplitudes received from each speaker
\end{tabular}} \& \multirow[t]{4}{*}{B1

B1
B1
B1
B} \& \multirow[t]{4}{*}{AW}

\hline \& \& \& \&

\hline \& \& \& \&

\hline \& \& \& \&

\hline \& \& Total \& 4 \&

\hline \multirow[t]{3}{*}{\[
$$
\begin{aligned}
& 2 \\
& 7
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{i} \& \multirow[t]{3}{*}{| Bright fringes are due to constructive interference and the dark fringes are due to destructive interference. |
| :--- |
| Path difference is $n \lambda$ or phase difference is 0° at positions of bright fringes. |
| Path difference is $(n+1 / 2) \lambda$ or phase difference is 180° at positions of dark fringes. |} \& B1 \&

\hline \& \& \& B1 \&

\hline \& \& \& B1 \&

\hline \& \multicolumn{2}{|l|}{A emits shorter wavelength of light. Since $x=\frac{\lambda D}{a} \propto \lambda$, the separation between the adjacent fringes is smaller.} \& B1 \&

\hline \& i \& There is no interference of light from the two slits or the bands disappear or there is only diffraction from a single slit. \& B1 \&

\hline \& \& Total \& 5 \&

\hline
\end{tabular}

| 2 |
| :--- | :--- | :--- | :--- | :--- |
| 8 |

		$\begin{aligned} & x=\frac{6.316 \times 10^{-7} \times 8.2}{0.20 \times 10^{-3}} \text { or } x=0.0259(\mathrm{~m}) \\ & t=0.14(\mathrm{~s}) \end{aligned}$	A1	Note the answer must be given to 2 SF for this mark Special case: allow 1 mark for $8.6 \times 10^{-11} \mathrm{~s}$ on the answer line; incorrect physics using $0.18=4.75 \times 10^{14} \lambda$
		Total	5	
		Level 3 (5-6 marks) Response shows clear distinction between investigations; clear and correct reasoning is given for the situations which give maximum / minimum readings in both cases, including correct numerical values There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Response refers to both investigations; some reasoning is given for the situations which give maximum / minimum readings in both investigations, including some numerical values There is a line of reasoning presented with some structure. The information presented is in the most part relevant and supported by some evidence. Level 1 (1-2 marks) Limited reasons are given for the situations which give maximum / minimum readings in either investigation There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.		Use level of response annotations in RM Assessor, e.g. L2 for 4 marks, L2^ for 3 marks, etc. Indicative scientific points may include: explanation 1 - receiver aerial vertical - electrons are driven (maximum distance) up and down along the length of the aerial because the oscillations (of the electric field) are vertical, causing maximum (a.c.) current - receiver aerial horizontal - electrons are driven (minimum distance) across the aerial because the oscillations (of the electric field) are only in the vertical plane (no oscillation along the aerial to cause current), so zero / minimum current - rotation of receiver aerial by $\pm 90^{\circ}$ (or 90° and 270°) from vertical leads to zero current
		explanation 2 - reflected wave superposes with incident wave at receiver aerial - coherent waves as from same source - constructive interference / waves in phase gives max		
		- reflected wave has travelled $\mathrm{n} \lambda$ further, $\mathrm{n}=0,1$, etc - so max current when plate is at $\lambda / 2,2 \lambda / 2$, etc from receiver aerial, i.e. $30,60 \mathrm{~cm}$ - destructive interference / waves 180° (π rad) out of phase gives zero current - reflected wave has travelled $(2 n+1) \lambda / 2$ further, $n=0,1$, etc - so zero current when plate is at $\lambda / 4,3 \lambda / 4$, etc from receiver aerial, i.e. $15,45 \mathrm{~cm}$ - reflected signal will be weaker the further it has to travel so no longer complete cancellation (ammeter reads close to zero)		
		Note: Give full credit to candidates who take the 180° ($\pi \mathrm{rad}$) phase change on reflection into account, which gives max current at $15,45 \mathrm{~cm}$ etc and zero current at $30,60 \mathrm{~cm}$ etc. Examiner's Comments		
		This was the second of the two LoR questions in this paper. It required knowledge of polarisation, superposition and interference. There is no one perfect model response but		

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& \& \& \begin{tabular}{l}
generally, for Level 3, candidates were required to give clear reasoning for the situations which gave both maximum and minimum readings in both investigations. Such candidates included correct numerical values in their responses (although 'half a wavelength' was acceptable in place of 30 cm). Level 2 responses were sometimes incomplete (e.g. giving the maximum position but not the minimum position) or confused (e.g. the maximum and minimum positions were given but were the wrong way around). Level 1 responses came from candidates who misunderstood the physics of one of the situations, or who confused phase difference and path difference, or whose descriptions were generally too vague to gain much credit. \\
It may be helpful to point out that investigation 2 was not about the formation of a stationary wave; rather, it was about two overlapping coherent waves forming regions of constructive and destructive interference. A common misconception was that the maximum and minima signals were related to antinodes and nodes. \\
Misconception \\
A minimum or zero reading does not occur when two waves are merely out of phase. They must be completely out of phase. The best way to describe this is to say that they are in antiphase.
\end{tabular} \\
\hline \& \& Total \& 6 \& \\
\hline \& - \& \((\) speed in material
\(=)\)
\begin{tabular}{ll}
\(\frac{3.0 \times 10^{8}}{1.20}\) \& or \(2.5 \times 10^{8}\) \\
\(\left(\mathrm{~ms}^{-1}\right)\) \& \(=\frac{1.5 \times 10^{-6}}{3.0 \times 10^{8}}\) \\
\(\left(t_{m}=\right) \frac{1.550^{-6} \times 1.20}{3.0 \times 10^{8}}\) \& or \\
or \& \(5.0 \times 10^{-15}(\mathrm{~s})\) \\
\(t .0 \times 10^{-15}(\mathrm{~s})\)
\end{tabular}
\(t=[6.0-5.0] \times 10^{-15}=1.0 \times 10^{-15}(\mathrm{~s})\) \& C1
C1
C1
A0

A \& | Allow other correct methods |
| :--- |
| Note omitting or incorrect use of 1.2 is XP |
| Allow 1 SF answer 5×10^{-15} |
| Allow 1 SF answer 6×10^{-15} |
| Note this also scores the first C1 mark |
| Note omitting or incorrect use of 1.2 is XP |
| Examiner's Comments |
| Generally, candidates answered this question extremely well and most scoring full marks |
| In (c)(i), the solutions ranged from being well-structured to an assortment of equations and substitutions filling the entire answer space. Equations for refractive index and speed were easily used to show the answer to be $1.0 \times 10^{-15} \mathrm{~s}$. |
| In (c)(ii), candidates either calculated the frequency of 5.0×10^{14} Hz and then used $T=f^{1}$ or calculated T directly using $T=\frac{6 \times 10 \times 10^{-7}}{3.0 \times 10^{8}}$ $=2.0 \times 10^{-15} \mathrm{~s}$. |
| (c)(iii) provided some discrimination with middle and top candidates getting the correct answer of 180°. As always, error carried forward (ECF) rules apply in calculations. This helped |

\hline
\end{tabular}

				those candidates who got an incorrect answer of $2.4 \times 10^{-15} \mathrm{~s}$ in (c)(ii) to score a mark for 150°. Misconception There were some missed opportunities, with some candidates making the following mistakes. - In (c)(i) calculating the difference in the time for the two rays by halving the period of $2.0 \times 10^{-15} \mathrm{~s}$. - In (c)(ii) using the wavelength in vacuum of $6.0 \times 10^{-7} \mathrm{~m}$ but the incorrect speed of $2.5 \times 10^{8} \mathrm{~ms}^{-1}$ to calculate the period. This gave an answer of $2.4 \times 10^{-15} \mathrm{~s}$; examiners allowed 1 mark for this method. - In (c)(iii), a small number of candidates, mainly at the low-end, confused the symbol φ for phase difference to be work function. This produced some bizarre answers.
	ii	$\begin{aligned} & (f=) \frac{3.0 \times 10^{8}}{6.0 \times 10^{-7}} \quad \underset{(\mathrm{~Hz}) \text { or } 5.0 \times 10^{14} \quad(T=) \frac{6.0 \times 10^{-7}}{3.0 \times 10^{8}}}{ } \begin{array}{l} \text { or }=2.0 \times 10^{-15}(\mathrm{~s}) \end{array} . \end{aligned}$	C1 A1	Allow 1 SF of 2×10^{-15} Allow 1 mark for $2.4 \times 10^{-15}(\mathrm{~s}) ; 2.5 \times 10^{8} \mathrm{~ms}^{-1}$ used
	$\begin{gathered} \text { ii } \\ i \\ \hline \end{gathered}$	$\varphi=180^{\circ}$	B1	Possible ECF from (i) and (ii) Note answer must be $\varphi=(\mathrm{cc})(\mathrm{i}) \times 360^{\circ} /(\mathrm{c})$ (ii) Not an answer in rad, e.g. π rad
		Total	6	
		Level 3 (5-6 marks) Clear explanation of observations and correct determination of frequency. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Clear explanation of observations or correct method to determine the frequency or some explanation of observations and some method for the determination of the frequency There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some	$\begin{aligned} & \mathrm{B} 1 \\ & \times 6 \end{aligned}$	Indicative scientific points may include: Explanation of observations - Metal sheet reflects microwaves - Idea/description of superposition - Constructive/destructive interference - Standing wave pattern between T and plate - Maxima are antinodes and and minima are nodes. - Phase difference at nodes and antinodes - Distance between successive maxima/minima is $\lambda / 2$ - Distance between adjacent regions of maximum and minimum intensities is $\lambda / 4$ Determination of frequency - $f=\frac{v}{\lambda}$

				This is an example of a Level of Response answer. The question gives a practical demonstration which candidates may have seen during the AS course. The question gives candidates the opportunity to describe the observations using their knowledge and understanding as well as determining the frequency of the microwaves. Candidates should use appropriate physics terms. In this case the candidate begins by implying that the microwaves are reflected by the barrier to superimpose a resultant wave. The candidate states that maxima are antinodes and formed by constructive interference. The candidate then explains the formation of nodes in terms of destructive interference. Appropriate physics terms have been used. The candidate has then correctly realised that the distance between the node and an anti-node is a quarter of a wavelength. The candidate could have stated that the distance between successive nodes is half a wavelength, but this is implied in the previous statement. Finally, the candidate clearly shows the method of determining the wavelength by quoting the wave equation, rearranging the equation and substituting values. The candidate finishes the determination of the frequency by calculating the frequency and then rounding to an appropriate number of significant figures two or three) and gives a correct unit (Hz).
		Total	6	
3	i	0.45 (m)	B1	Examiner's Comments This question was generally answered very well. Most candidates understood the definition of amplitude although, a number of candidates incorrectly stated 0.9 m
	ii	4.0 (m)	B1	Ignore significant figures Examiner's Comments This question was generally answered very well with most candidates understanding the definition of wavelength.
		$\begin{gathered} \frac{\text { O. } 5}{4} \text { Or } \frac{1}{8} \\ \left(\frac{0.5}{4} \times 2 \pi=\right) \frac{\pi}{4} \end{gathered} \text { or } 0.79(\mathrm{rad})$	C1	Allow ECF from (ii) Note 0.785 Examiner's Comments The majority of candidates did not gain credit on this question. Successful candidates clearly showed their working. Some

			candidates were not sure how to change a fraction of a wavelength into a phase difference in radians.
	$\begin{array}{l\|l} \text { i } & 0.45^{2} \text { or } 0.15^{2} \text { or } 0.2025 \text { or } 0.0225 \\ \mathrm{v} & 9 \end{array}$	C1 A1	Allow ECF from (i) Allow one significant figure Examiner's Comments Candidates found this question challenging. They often did not realise that the intensity is proportional to the amplitude squared. It was helpful where candidates showed their working.
	Total	6	
	Level 3 (5-6 marks) Clear methods of measurement, statement of uncertainties and how to minimise them There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Adequate methods of measurement, statement of uncertainties and how to minimise them There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence. Level 1 (1-2 marks) Limited methods of measurement, statement of uncertainties or how to minimise them The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear. 0 marks No response or no response worthy of credit.	$\begin{gathered} \mathrm{B} 1 \times \\ 6 \end{gathered}$	Indicative scientific points may include: M measurement D measured with metre rulers y measured using mm graticule on glass screen observed with hand lens U uncertainty D maximum $\pm 2 \mathrm{~mm}$ in 1.5 to $2.0 \mathrm{~m} 0.1 \%$ $\mathbf{y} \pm 0.5 \mathrm{~mm}$ in the position of the centre of each maximum, giving an uncertainty of $\pm 1 \mathrm{~mm}$ $x=600 \times 10^{-9} \times 2 / 5 \times 10^{-4}=2.4 \mathrm{~mm}$ so we have $y=5 x$ with $\pm 1 /(2.4 \times 5)$ so of order of 8 to 10% in value of x. a vernier to $\pm 0.05 \mathrm{~mm}$ in 0.5 mm gives uncertainty of order of 10\% total uncertainty of about 20% or $\pm 100 \mathrm{~nm}$ to 120 nm A minimising uncertainties D maximise distance available on bench y measuring across the maximum number of x possible a suggesting that a more sensitive method is needed, e.g. using slide projector to display enlarged image of slits on screen compared to millimetre scale projected on screen or similar
	Total	6	
	Level 3 (5-6 marks) Clear procedure, measurements and analysis There is a well-developed line of reasoning which is clear and logically structured. The	$\begin{gathered} \text { B1 } x \\ 6 \end{gathered}$	Indicative scientific points may include: Procedure - labelled diagram - two loudspeakers OR loudspeaker and double slit - signal generator connected to loudspeaker(s)

information presented is relevant and substantiated.

Level 2 (3-4 marks)

Some procedure, some measurements and some analysis.

There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence.

Level 1 (1-2 marks)

Limited procedure, limited measurements and limited analysis

There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.

0 marks

No response or no response worthy of credit.

- microphone and oscilloscope/sound sensor
- microphone and oscilloscope/sound sensor moved between loudspeakers
- safety precaution (ear defenders)
- method to avoid reflections of sound
- change frequency and repeat measurements for x
- $D \gg a$

Measurements

- frequency determined from oscilloscope/ reading from signal generator
- additional detail from use of oscilloscope e.g. time-base to determine period and $f=1 / T$
- use of rule(r) to measure distances a, D and x
- measures over several maxima/minima

Analysis

- rearrangement of equation for v or into $y=m x$
- plot a graph of x against $1 / f$ or equivalent
- straight line through origin confirms relationship
- gradient $=v D / a$
- $v=\frac{a \times \text { gradient }}{D}$

Examiner's Comments

This question is assessing candidates' abilities to plan an investigation.

Some candidates assumed that this was two-source light interference and discussed the use of lasers, etc. It is important that candidates answer the question set.

The stem of the question indicates that a suitable diagram should be drawn. Many candidates did not label their diagrams, or the diagrams were not workable. Higher ability candidates indicated two loudspeakers connected to a signal generator and a microphone connected to an oscilloscope to detect the resultant signal.

When answering planning questions, candidates should identify the measurements that need to be taken and indicate appropriate measuring instruments. In this experiment, candidates were able to explain how the frequency of the sound could be determined using an oscilloscope as well as how distances could be measured.

Candidates also needed to explain how the data would be analysed. Higher ability candidates suggested the plotting of an appropriate graph and explained how the speed of sound could be determined from the gradient.

			information presented is clear relevant and substantiated. Level 2 (3-4 marks) Some description and explanation for both experiments or clear description and explanation for one experiment and some discussion of uncertainty There is a line of reasoning presented with some structure. The information presented is in the most part relevant and supported by some evidence. Level 1 (1-2 marks) Limited description and explanation for one experiment There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.		- Coherent signals / (sound) waves - Interference / superposition - Maximum signal / minimum signal - Idea of how wavelength is determined (e.g. distance between adjacent max positions $=\lambda$) - $v=\mathrm{f} \times \mathrm{\lambda}$ Experiment (b) - Stationary / standing wave produced - Superposition of waves travelling in opposite directions - Nodes / antinodes - Idea of how wavelength is determined (e.g. distance between adjacent nodes $=\lambda / 2$) - $v=\mathrm{f} \times \lambda$ Uncertainty - Measure multiples of λ - to reduce \% uncertainty (by factor n) - move from minimum signal to minimum signal - so can increase sensitivity of scope to get better fix on each minimum position / increase loudness from speaker - Lower frequency from signal generator - so increases A with (\%) uncertainty reduced - Do experiment outside - to reduce background reflections from room (so that sharper minima should be observed) Examiner's Comments Answers were generally well structured into two sections, one for each experiment. A few candidates thought they could measure the wavelength on the oscilloscope screen. In experiment (a) most understood that the phase difference between the two oscillations at the microphone changed as one speaker was moved away. Explanations often muddled path and phase difference or referred to nodes and antinodes detected by the microphone. Some candidates misinterpreted the experiment moving the microphone to detect interference fringes, allowing the double slits formula to be used to find the wavelength. Others thought that Doppler shift was applicable. For experiment (b) many candidates used maxima and minima in place of antinodes and nodes although most recognised this to be a standing wave situation. Quite a few candidates ignored the instruction about reducing the uncertainty. The best candidates suggested reducing the frequency to reduce the percentage uncertainty in the wavelength measurement.
			Total	6	
	a		At point P : path difference between slits and screen is a whole / integer number of	B1	Allow $\mathrm{n} \lambda$ or λ Not phase difference

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& \begin{tabular}{l}
wavelengths (for constructive interference) \\
At point Q: path difference between slits and screen is an odd number of half wavelengths (for destructive interference)
\end{tabular} \& B1 \& \begin{tabular}{l}
Allow \(\left(\boldsymbol{n}+\frac{1}{2}\right) \lambda\) \\
Not \(\lambda / 2\) \\
Examiner's Comments \\
It was expected that candidates would describe the path difference in terms of the wavelength. Candidates often realised that the bright line would have a path difference of an integer number of wavelengths, this was often written as \(n \lambda\). To explain the dark line many candidates struggled with the appropriate relationship in terms of \(\lambda\) or did not state an odd number of half wavelengths.
\end{tabular} \\
\hline \& \& \begin{tabular}{l}
\[
x=4.22 \mathrm{~mm}
\] \\
1
\[
\begin{aligned}
\& \lambda=\frac{4.22 \times 10^{-3} \times 0.56 \times 10^{-3}}{{ }^{4.5}} \\
\& 5.25 \times 10^{-7} \mathrm{~m}
\end{aligned}
\] \\
\(\frac{0.02}{4.5}\) or \(\frac{0.02}{0.56}\) or \(\frac{0.2}{42.2}\)
\[
\left(\frac{0.02}{4.5}+\frac{0.02}{0.56}+\frac{0.2}{42.2}\right) \times 100=4.48 \%
\] \\
Alternative max / min method: \\
\(\mathbf{2}_{\lambda_{\max }}=\frac{4.24 \times 10^{-3} \times 0.58 \times 10^{-3}}{4.48}=5.49 \times 1\) \\
and/or
\[
\lambda_{\text {min }}=\frac{4.20 \times 10^{-3} \times 0.54 \times 10^{-3}}{4.52}=5.02 \times 1
\] \\
\(\frac{\Delta \lambda}{\lambda} \times 100=4.4 \%\) or \(4.6 \%\)
\end{tabular} \& C1
C1
A1
C1
A1
A1

B1
B1

B1 \& | Note $\mathbf{x}=42.2 \mathrm{~mm}$ or $4.2 \times 10^{-2} \mathrm{~m}$ scores zero |
| :--- |
| Note $x=3.84,4.77 \times 10^{-7} \mathrm{~m}$ may score $\max 2$ |
| Allow 4\% or 5\% with evidence of working Ignore significant figures |
| Examiner's Comments |
| Although candidates correctly identified the correct equation, a large number of candidates did not determine the fringe spacing correctly. Some candidates used 42.2 cm , others divided 42.2 cm by 11,15 or 20 . Furthermore, some candidates did not convert the slit separation from millimetres to metres. Candidates were able to identify the equation from the Data, Formulae and Relationships Booklet. |
| Most candidates were able to determine at least one percentage uncertainty for the individual quantities correctly. Mistakes were made either on determining the other quantities or adding the percentage uncertainties. Some candidates attempted a maximum / minimum method - the common error with this method was not dividing maximum by minimum or minimum by maximum. |

\hline \& \& \[
$$
\begin{aligned}
& \frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{5.25 \times 10^{-7}}=\frac{1.989 \times 10^{-25}}{5 \text { bii } 1}=3.79 \\
& n=\frac{50 \times 10^{-3}}{3.79 \times 10^{-19}}=2.5 \times 10^{23} \times 5 \text { bii } 1=1.3 \times
\end{aligned}
$$

\] \& C1 \& | Allow ecf from bii |
| :--- |
| Examiner's Comments |
| Candidates found this question difficult. Many could not determine the energy of a photon correctly - an error carried forward was allowed from 5(b)(ii)1. The question also required candidates to realise that 50.0 mW is equivalent to $50.0 \mathrm{~mJ} \mathrm{~s}^{-1}$. |
| A common error was to divide the power by the charge on an electron. |

\hline
\end{tabular}

	ii	$2.6 \mathrm{eV}=2.6 \times 1.6 \times 10^{-19}=4.16 \times 10^{-19} \mathrm{~J}$ ORA Energy of photon is less than work function so photoelectrons will not be emitted	M1	Allow photon has 2.37 eV of energy Allow conclusion based $5 \mathbf{c i}$ Examiner's Comments To explain whether photoelectrons will be emitted, candidates needed to convert the work function measured in electron volt to joule. A clear conclusion was needed.
		Total	11	
38	i ${ }^{\text {i }}$	reflected signals from M (amplitude a) and H (amplitude A) are added at the receiver path difference between moving reflected signal and fixed reflected signal varies between 0 and λ sum of the displacements at the receiver varies between $\mathrm{A}+\mathrm{a}$ and $\mathrm{A}-\mathrm{a}$ any 3 from - signal from M is attenuated because travels further; - absorbed passing twice through H or some reflected at the back of H - signal from H will increase as H moves towards the detector - if A is much greater than a then variation will be difficult to detect.	B1	accept interfere.
			B1	or phase difference between the two received signals varies between 0 and 2π
			B1	
			B1	allow absorbed or similar word for attenuated.
				allow full credit for discussion in terms of ($\left.A^{2}-a^{2}\right) /\left(A^{2}+a^{2}\right)$.
	ii detected signal varies between max and min for $\lambda / 4(=7.0 \mathrm{~mm})$ as path difference is $\lambda / 2$ iievery $\lambda / 2(14 \mathrm{~mm})$ moved, the signal goes through one cycle iiso for 200 Hz must go through 100λ in 1 s $=2.8\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$.		B1	
			B1	
			B1	
		Total	9	
	i	Place a microphone close to loudspeaker and connect it to the oscilloscope. Measure the number of divisions between neighbouring peaks of the signal. (AW) The separation between the neighbouring peaks should be 3.6 divisions.	B1 B1 B1	Allow 'connect oscilloscope to the signal generator (which is connected to the loudspeaker)'
	ii The sound is diffracted at each slit. The diffracted waves interfere in the space beyond the slits.		B1 B1	

